public class CorrelationCoefficients
extends java.lang.Object
Modifier and Type | Class and Description |
---|---|
class |
CorrelationCoefficients.CorrelationInformation |
class |
CorrelationCoefficients.RankCorrelationInformation |
protected class |
CorrelationCoefficients.SpearmanRankNumberPair |
Modifier and Type | Field and Description |
---|---|
protected java.lang.String |
attrName1 |
protected java.lang.String |
attrName2 |
protected java.lang.Object[] |
dataArray |
protected double[] |
means |
protected Feature[] |
rawFeatures |
Constructor and Description |
---|
CorrelationCoefficients(Feature[] features,
java.lang.String attr1,
java.lang.String attr2) |
Modifier and Type | Method and Description |
---|---|
protected double |
aritmeticMiddle(Feature[] features,
int attr) |
static double |
getDeviation(Feature[] features,
java.lang.String attr,
double mean)
Returns the deviation of the values of the given attribute.
|
CorrelationCoefficients.RankCorrelationInformation |
getKendalsTauRankCoefficient()
"Spearman Rank Order Correlations (or "rho") and Kendall's Tau-b (or "tau") Correlations are used when the variables are measured as ranks (from highest-to-lowest or lowest-to-highest)"
http://www.themeasurementgroup.com/datamining/definitions/correlation.htm |
double |
getMean(int nr)
Get the aritmetic middle for the nr-th attribut given
|
CorrelationCoefficients.CorrelationInformation |
getPearsonCoefficient()
get Pearson's correlation coefficient (good, dimension-less measure, if there is a linear relation between the attributes)
see: http://www.netzwelt.de/lexikon/Korrelationskoeffizient.html |
protected java.util.HashMap<java.lang.Integer,java.lang.Double> |
getRank2SpearmanRankMap(java.lang.Object[] sortedValues,
java.util.HashMap<java.lang.Object,java.lang.Integer> value2NumAppearances) |
CorrelationCoefficients.RankCorrelationInformation |
getSpearmansRhoCoefficient()
get Pearson's correlation coefficient (good, dimension-less measure, if there is a linear relation between the attributes)
see: http://www.netzwelt.de/lexikon/Korrelationskoeffizient.html |
protected double |
getVariance(java.lang.String attr) |
protected CorrelationDataPair[] |
initializeDataStorage(Feature[] features) |
protected java.lang.Object[] dataArray
protected java.lang.String attrName1
protected java.lang.String attrName2
protected double[] means
protected Feature[] rawFeatures
public CorrelationCoefficients(Feature[] features, java.lang.String attr1, java.lang.String attr2)
protected CorrelationDataPair[] initializeDataStorage(Feature[] features)
public static double getDeviation(Feature[] features, java.lang.String attr, double mean)
features
- array containing the features we want the deviation forattr
- name of the attribute to calculate the deviation formean
- the mean for the given featuresjava.lang.IllegalArgumentException
- if the attribute is not of a numerical typeFeatureCollectionTools
protected double getVariance(java.lang.String attr)
protected double aritmeticMiddle(Feature[] features, int attr)
public double getMean(int nr)
nr
- index number of attribut to calculate the mean forpublic CorrelationCoefficients.CorrelationInformation getPearsonCoefficient()
protected java.util.HashMap<java.lang.Integer,java.lang.Double> getRank2SpearmanRankMap(java.lang.Object[] sortedValues, java.util.HashMap<java.lang.Object,java.lang.Integer> value2NumAppearances)
public CorrelationCoefficients.RankCorrelationInformation getSpearmansRhoCoefficient()
public CorrelationCoefficients.RankCorrelationInformation getKendalsTauRankCoefficient()